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1. Definition of Capacitance 

Consider two conductors carrying charges of equal magnitude and opposite sign. The 

quantity of charge Q on a capacitor is linearly proportional to the potential difference ΔV between 

the conductors of the capacitor   

VQ   

The proportionality constant depends on the shape and separation of the conductors. We can write 

this relationship as                       

VCQ =  

The capacitance C of a capacitor is defined as the ratio of the magnitude of the charge on either 

conductor to the magnitude of the potential difference between the conductors: 

V

Q
C


=    Farad (F)       ………………….             (1) 

We can calculate the capacitance for a spherical charged conductor, where the electric potential of 

the sphere of radius R is simply  

ΔV=KQ/R     (Chapter 3), 

we have 

V

Q
C


=               

K

R

R
KQ

Q
C ==  

  RC 04 =        ……………………….             (2) 

This expression shows that the capacitance of an isolated charged sphere is proportional to its 

radius and is independent of both the charge on the sphere and the potential difference. The 

capacitance of a pair of conductors depends on the geometry of the conductors as following. 

2. Calculating Capacitance 

Let us illustrate this with three familiar geometries, namely, parallel plates, concentric Cylinders and 

concentric spheres. 

A) Parallel-Plate Capacitors 

Two parallel metallic plates of equal area A are separated by a distance d, as shown in Figure 1. One 

plate carries a charge + Q, and the other carries a charge -Q. 
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The value of the electric field between two parallel plates is 

0


=E

                        
A

Q
E

0
=

 

Because the electric field between the plates of a parallel-plate capacitor is uniform near the center 

but no uniform near the edges (see Fig.1), the magnitude of the potential difference between the 

plates equals Ed; therefore, 

d
A

Q
EdV 










==

0
 

V

Q
C


=

                         
A/Qd

Q
C

0
=

 

d

A
C 0=           ………………………….             (3) 

That is, the capacitance of a parallel-plate capacitor is proportional to the area of its plates and 

inversely proportional to the plate separation. 

Example 1:   

A parallel-plate capacitor with air between the plates has an area A = 2 × 10-4 m2 and a plate 

separation d = 1mm. Find its capacitance. 

Solution     

                     d

A
C 0=

           

                    

( ) ( )
F.

.
C 12

3

412

10771
101

10210858
−

−

−−

=



=

  

C  =  771.  pF 

Fig.1 a 
Fig.1 b 
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B) The Cylindrical Capacitor 

Consider a cylindrical conductor of length   ,radius a and charge Q , is coaxial with a cylindrical 

shell radius  b > a, and charge - Q (Figure 2). To find the capacitance of this cylindrical capacitor 

 

The potential difference between the two cylinders, which is given in general by 

−=−
b

a
ab ds.EVV  

The electric field of a cylindrical charge distribution having linear charge density 

r
KE 2=  

                           
−=−

b

a
rab dr.EVV

   

                            
−=−

b

a
ab

r

dr
KVV 2  

         









−=−

a

b
lnKVV ab 2                                        But  

Q
=

    
 

V

Q
C


=

   ( ) 







=

a

b
ln/QK

Q

2
 

     








=

a

b
lnK

C

2


                   ………………………….             (4) 

 

Fig.2 
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C) The Spherical Capacitor 

Consider a spherical capacitor consists radius b and charge - Q concentric with a smaller conducting 

sphere of radius a and charge +Q (Figure 3). To find the capacitance  

 

 

          ab

ab
KQVV ab

−
=−

                But             V

Q
C


=

   
 

             
  ( )abK

ab
C

−
=

           

………………………….             (5) 

Where b >> a     

( ) ( ) K

a

bK

ab

abK

ab
limC
b

=
−

=
→

 

aC 04=
     

………………………….             (6)
         

 

3) Capacitors with Dielectrics 

A dielectric is a no conducting material, such as rubber, glass, or waxed paper. When a 

dielectric is inserted between the plates of a capacitor, then the capacitance increases. If the 

dielectric completely fills the space between the plates, the capacitance increases by a 

dimensionless factor K, which is called the dielectric constant of the material. The dielectric 

constant varies from one material to another. A charged capacitor is (a) before and (b) after 

insertion of a dielectric between the plates, as shown in fig 4. 

−=−
b

a
ab

r

dr
KQVV

2
               

−=−
b

a
ab

r

dr
KQVV
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b

a

ab
r

KQVV 







−=−

1

                 

      









−−=−

ab
KQVV ab

11
 

Fig.3 
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Consider a parallel-plate capacitor that without a dielectric has a charge Q0 and a capacitance C0. 

The potential difference across the capacitor is  

ΔV0 = Q0/C 0 

The voltages with and without the dielectric are related by the factor K as follows: 

K

V
V 0

=
 

Because K >1 and  Q0=Q (the charge Q0 on the capacitor does not change),then   ΔV < ΔV0   

V

Q
C


= 0

                      K
V

Q
C

0

0


=

              

  0

0

V

Q
KC


=  

C = K C0 

The capacitance increases by the factor K when the dielectric completely fills the region between 

the plates. 

d

A
KC 0=

 
………………………….             (7)

         
 

If the dielectric is introduced while the potential difference is held constant by a battery, the charge 

increases to a value Q = KQ0. 

Fig.4 
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Example 2:  A parallel-plate capacitor has plates of dimensions 2 cm by 3 cm separated by a 1 mm 

thickness of paper. Where K =3.7 and the dielectric strength of paper is 16 * 106 V/m. 

(A) Find its capacitance.
 
(B) What is the maximum charge that can be placed on the capacitor? 

d

A
KC 0=

 

( ) ( )
12

3

412

1020
101

10610858
73 −

−

−−

=



=

.
.C

                  C = 20 pF   

== dEV maxmax ( ) ( )36 1011016 −  = 31016 V
 

Hence, the maximum charge is 

== maxmax VCQ ( ) ( )312 10161020  −
 C

            
Qmax = C. 320

 

4. Combinations of Capacitors Parallel and Series Combination  

In parallel combination In series combination 

the individual potential differences across 

capacitors connected are equal to the total 

potential difference 

Vtotal=V1=V2 

The total potential difference across any number 

of capacitors is the sum of the potential 

differences across the individual capacitors. 

Vtotal=V1+V2 

the total charge on capacitors is the sum of the 

charges on the individual capacitors 

Qtotal = Q1+Q2 

 

the charges on capacitors are the same 

 

Qtotal = Q1=Q2 

 

the equivalent capacitance of capacitors is the 

algebraic sum of the individual capacitances 

Ceq = C1+C2 

the inverse of the equivalent capacitance is the 

algebraic sum of the inverses of the capacitances 

1/Ceq = 1/C1+1/C2 

  

Solution     
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Example 3: Find the equivalent capacitance between a and b for the combination of capacitors 

shown in Figure 4. All capacitances are in microfarads. 

Solution     

 

5) Energy Stored in a Charged Capacitor 

Suppose that q is the charge on the capacitor at some instant during the charging process.  

At the same instant, the potential difference across the capacitor is       
C

q
V =  

The work necessary to transfer an increment of charge dq from the plate carrying charge -q to the 

plate carrying charge q (which is at the higher electric potential) is   

VdqdW =
                            

dq
C

q
dW =  

The total work required to charge the capacitor from q =0 to some final charge q = Q is        

=
Q

dq
C

q
W

0                                =
Q

dqq
C

W
0

1
 

C

Q
W

2

2

=
                

………………………….             (8)
         

 

The work done in charging the capacitor appears as electric potential energy U stored in the 

capacitor. We can express the potential energy stored in a charged capacitor in the following forms: 

C

Q
U

2

2

=
                                    

VQU =
2

1
 

Ceq1 = C1 + C2 =    Ceq1 = 1 μF + 3 μF = 4μF 

Ceq2 = C4 + C5 =    Ceq2 = 6 μF + 2 μF = 8μF 

 

1/Ceq3 = 1/C3 + 1/C eq1        1/Ceq3 = 1/4+ 1/4   Ceq3 = 2 μF 

1/Ceq4 = 1/C eq2 + 1/C6        1/Ceq4 = 1/8+ 1/8   Ceq4 = 4 μF 

 

Ctotal = Ceq3 + Ceq4                  Ctotal = 2μF + 4μF= 6 μF 

 

Fig.4 
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2

2

1
VCU =

             
………………………….             (9)

         
 

This result applies to any capacitor, regardless of its geometry. Then the stored energy increases as 

the charge increases and as the potential difference increases.  

We can consider the energy stored in a capacitor as being stored in the electric field created between 

the plates as the capacitor is charged. This description is reasonable because the electric field is 

proportional to the charge on the capacitor. For a parallel-plate capacitor, the potential difference 

and capacitance are equations 

ΔV =Ed.    and       
d

A
C 0=

 

 

20

2

1
d.E

d

A
U 2
=            

       
( ) 2EAdU 0

2

1
=

 

The energy per unit volume     

 

                                            V

U
uE =

                                         Where V=Ad 

The energy density can be written 

 

( ) 2

E Eu 0
2

1
=

             
………………………….             (10)

     

     
 

The energy density in any electric field is proportional to the square of the magnitude of the electric 

field at a given point. 

 


