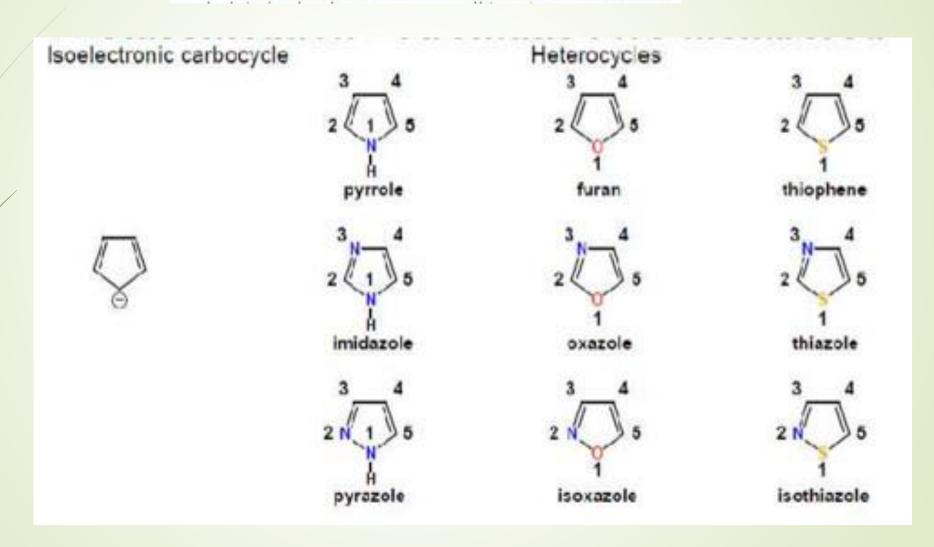
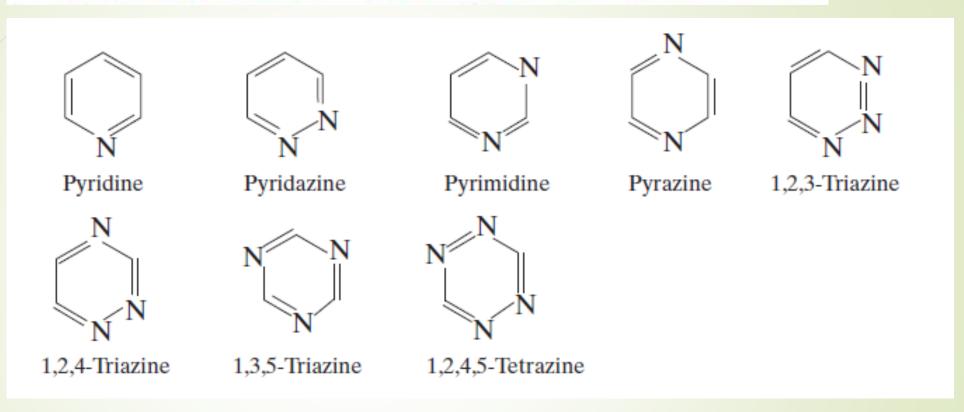

Introduction to Heterocyclic Chemistry

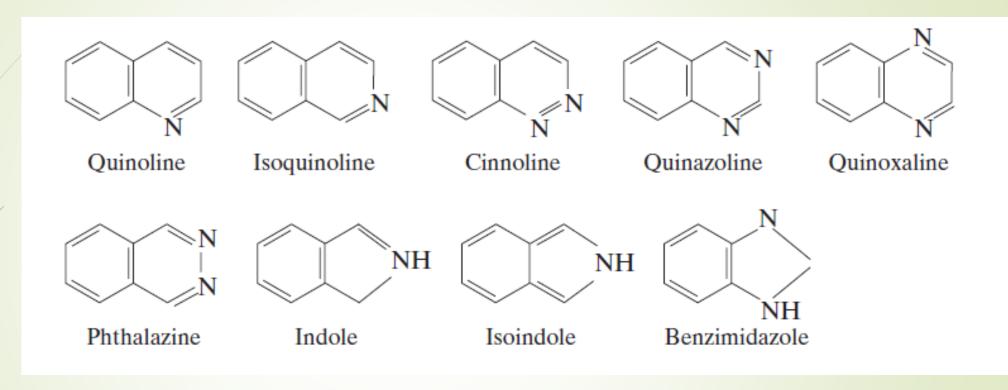
Assist. Prof. Dr. Ayad MR Raauf

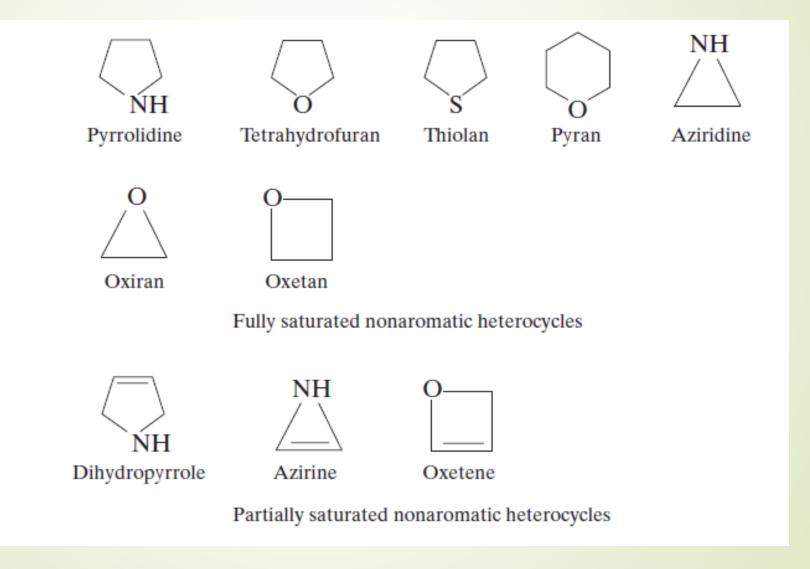
Introduction


· Heterocycles contain one or more heteroatoms in a ring


- · Heterocycles are important and a large proportion of natural products contain them
- · Many pharmaceuticals and agrochemicals contain at least one heterocyclic unit

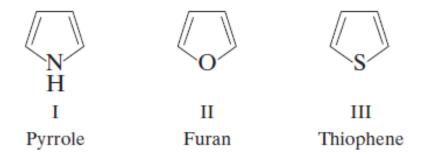
Classification - Unsaturated / Saturated


Classification - Aromatic Five-Membered


Classification - Aromatic Six-Membered

There are fused-ring system aromatic heterocycles.

Besides the above fully unsaturated aromatic heterocycles, there are other nonaromatic small-ring heterocyclic compounds that may be either partially or fully saturated.

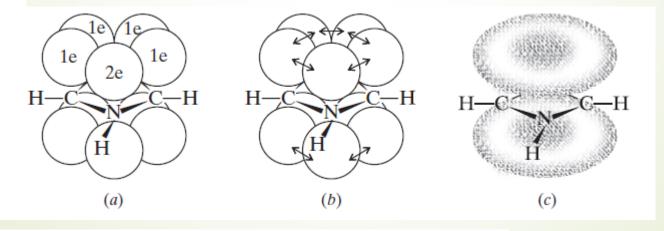


AROMATIC HETEROCYCLIC COMPOUNDS

(5-atom, six- π -electron aromatic heterocycles)

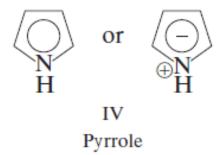
Structure of pyrrole, furan, and thiophene

The simplest of the five-membered heterocyclic compounds are **pyrrole**, **furan**, and **thiophene**, each of which contains a single heteroatom.

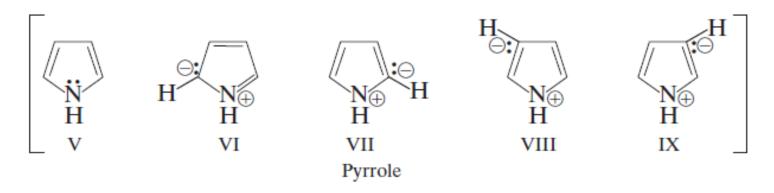

Heats combustion indicate resonance stabilization to the extent of 22–28 kcal/mol; somewhat less than the resonance energy of benzene (36 kcal/mol)

On the basis of these projerties, pyrrole, furan, and thiophene must be considered aromatic.

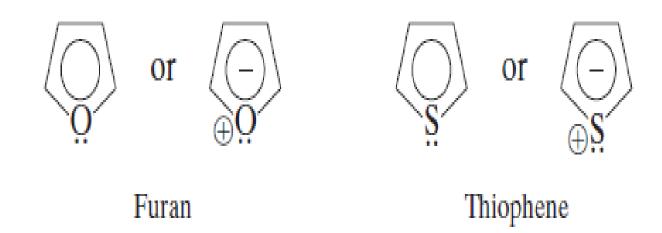
Structure of pyrrole, furan, and thiophene


Let us look at the orbital picture of one of these molecules, pyrrole. Each atom of the ring, whether carbon or nitrogen, is held by a σ bond to three other atoms. In forming these bonds, the atom uses three sp^2 orbitals, which lie in a plane and are 120° apart. After contributing one electron to each σ bond, each carbon atom of the ring has left *one* electron and the nitrogen atom has left *two* electrons; these electrons occupy p orbitals. Overlap of the p orbitals gives rise to π clouds, one above and one below the plane of the ring; the π clouds contain a total of six electrons, the

aromatic sextet


Pyrrole molecule. (a) Two electrons in the p orbital of nitrogen; one electron in the p orbital of each carbon. (b) Overlap of the p orbitals to form π bonds. (c) Clouds above and below the plane of the ring; a total of six π electrons, the aromatic sextet.

It thus appears that pyrrole is better represented by IV,

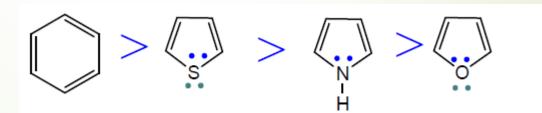

in which the circle represents the aromatic sextet.

What does IV mean in terms of conventional valence-bond structures? Pyrrole can be considered a hybrid of structures V-IX. Donation of electrons to the ring by

nitrogen is indicated by the ionic structures in which nitrogen bears a positive charge and the carbon atoms of the ring bear a negative charge.

Furan and thiophene have structures that are analogous to the structure of pyrrole. Where nitrogen in pyrrole carries a hydrogen atom, the oxygen or sulfur carries an unshared pair of electrons in an sp^2 orbital. Like nitrogen, the oxygen or

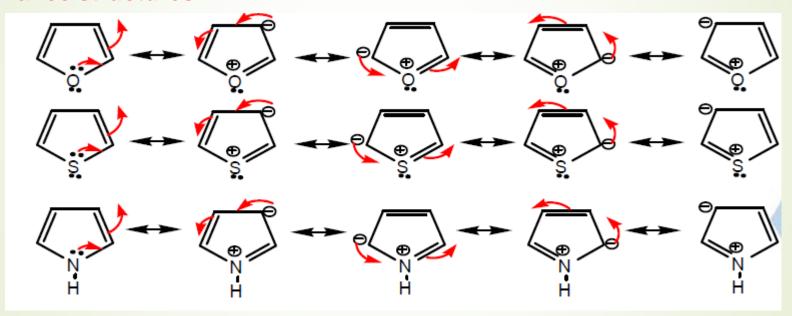
sulfur atom provides two electrons for the π cloud; as a result these compounds, too, behave like extremely reactive benzene derivatives.



Structure and Aromaticity

Pyrrole furan and thiophene are aromatic because:

1) they fulfill the criteria for aromaticity, the extent of delocalization of the nonbonding electron pair is decisive for the aromaticity, thus the grading of aromaticity is in the order of: furan< pyrrole < thiophene< benzene this order is consistent with the order of electronegativity values for oxygen (3.44), nitrogen (3.04) and thiophene (2.56).


Order of aromaticity

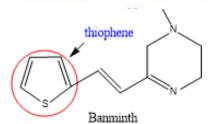
Structure and Aromaticity

2) They tend to react by electrophilic substitution due appearance of –ve charge on carbon atoms (2 & 3) due to delocalization as shown in the following resonance structures

In comparison to benzene the order of reactivity in electrophilic substitution is as follows:

Pyrrole > Furan > Thiophene > Benzene

Bioactive Furans, Pyrroles and Thiophenes


S NH O

Ranitidine

 Ranitidine (Zantac®, GSK) is one of the biggest selling drugs in history. It is an H₂-receptor antagonist and lowers stomach acid levels – used to treat stomach ulcers

Ketorolac

• Ketorolac (Toradol®, Roche) is an analgesic and anti-inflammatory drug

 Pyrantel (Banminth®, Phibro) is an anthelminthic agent and is used to treat worms in livestock

Give the systematic name for the following heterocyclic ring of drugs.

a. oxazole

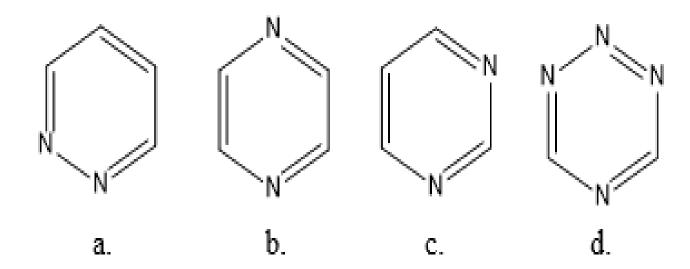
b. thiazole

c. pyrazole

d. imidazole

a. cinnoline

b. isoquinoline c. quinoline


d. isoindole

a. pyridine

b. furane c. thiophine

d. pyrrole

Which of the following compounds has correct name (pyridazine)?

) Furan	heterocyclic aron b) Pyrrole	_	d) Naphthalene
	b) Pyrrole	c) Thiophene	d) Naphthalene
is a 6 men	nbered heterocyclic	compound.	
) Furan	b) Pyrrole	c) Thiophene	d) Pyridine
Molecular form	nula of pyrrole is		
) C4H5N	b) C4H4N	c) C5H5N	d) C6H6N
) Pyridine) Pyrrole) Furan	following is a r	not a five membered	ring?
()))	Molecular form C4H5N Vhich of the Pyridine Pyrrole	Molecular formula of pyrrole is C4H5N b) C4H4N Vhich of the following is a reprictine Pyrrole Furan	Molecular formula of pyrrole is C4H5N b) C4H4N c) C5H5N Which of the following is a not a five membered Pyridine Pyrrole Furan